Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
BMC Med ; 19(1): 201, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425801

RESUMO

BACKGROUND: The pathogenesis of malaria in pregnancy (MiP) involves accumulation of P. falciparum-infected red blood cells (pRBCs) in the placenta, contributing to poor pregnancy outcomes. Parasite accumulation is primarily mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). Magnitude of IgG to pRBCs has been associated with reduced risk of MiP in some studies, but associations have been inconsistent. Further, antibody effector mechanisms are poorly understood, and the role of antibody complement interactions is unknown. METHODS: Studying a longitudinal cohort of pregnant women (n=302) from a malaria-endemic province in Papua New Guinea (PNG), we measured the ability of antibodies to fix and activate complement using placental binding pRBCs and PfEMP1 recombinant domains. We determined antibody-mediated complement inhibition of pRBC binding to the placental receptor, chondroitin sulfate A (CSA), and associations with protection against placental parasitemia. RESULTS: Some women acquired antibodies that effectively promoted complement fixation on placental-binding pRBCs. Complement fixation correlated with IgG1 and IgG3 antibodies, which dominated the response. There was, however, limited evidence for membrane attack complex activity or pRBC lysis or killing. Importantly, a higher magnitude of complement fixing antibodies was prospectively associated with reduced odds of placental infection at delivery. Using genetically modified P. falciparum and recombinant PfEMP1 domains, we found that complement-fixing antibodies primarily targeted a specific variant of PfEMP1 (known as VAR2CSA). Furthermore, complement enhanced the ability of antibodies to inhibit pRBC binding to CSA, which was primarily mediated by complement C1q protein. CONCLUSIONS: These findings provide new insights into mechanisms mediating immunity to MiP and reveal potential new strategies for developing malaria vaccines that harness antibody-complement interactions.


Assuntos
Malária Falciparum , Complicações Parasitárias na Gravidez , Anticorpos Antiprotozoários , Antígenos de Protozoários , Eritrócitos , Feminino , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Parasitemia , Placenta , Plasmodium falciparum , Gravidez , Resultado da Gravidez , Gestantes
3.
Front Immunol ; 12: 641421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815393

RESUMO

RTS,S is the leading malaria vaccine in development, but has demonstrated only moderate protective efficacy in clinical trials. RTS,S is a virus-like particle (VLP) that uses the human hepatitis B virus as scaffold to display the malaria sporozoite antigen, circumsporozoite protein (CSP). Particle formation requires four-fold excess scaffold antigen, and as a result, CSP represents only a small portion of the final vaccine construct. Alternative VLP or nanoparticle platforms that reduce the amount of scaffold antigen and increase the amount of the target CSP antigen present in particles may enhance vaccine immunogenicity and efficacy. Here, we describe the production and characterization of a novel VLP that uses the small surface antigen (dS) of duck hepatitis B virus to display CSP. The CSP-dS fusion protein successfully formed VLPs without the need for excess scaffold antigen, and thus CSP represented a larger portion of the vaccine construct. CSP-dS formed large particles approximately 31-74 nm in size and were confirmed to display CSP on the surface. CSP-dS VLPs were highly immunogenic in mice and induced antibodies to multiple regions of CSP, even when administered at a lower vaccine dosage. Vaccine-induced antibodies demonstrated relevant functional activities, including Fc-dependent interactions with complement and Fcγ-receptors, previously identified as important in malaria immunity. Further, vaccine-induced antibodies had similar properties (epitope-specificity and avidity) to monoclonal antibodies that are protective in mouse models. Our novel platform to produce VLPs without excess scaffold protein has wide implications for the future development of vaccines for malaria and other infectious diseases.


Assuntos
Imunogenicidade da Vacina/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Malária Falciparum/imunologia , Camundongos , Plasmodium falciparum
4.
Commun Med (Lond) ; 1: 26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602185

RESUMO

Malaria vaccines are urgently needed in the fight against this devastating disease that is responsible for almost half a million deaths each year. Here, we discuss recent clinical advances in vaccine development and highlight ongoing challenges for the future.

5.
Immunol Rev ; 293(1): 38-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556468

RESUMO

Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody-complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine-induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.


Assuntos
Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Parasita/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Ativação do Complemento/imunologia , Modelos Animais de Doenças , Eritrócitos/imunologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Imunidade Inata , Imunização Passiva , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/crescimento & desenvolvimento
6.
PLoS One ; 14(9): e0221394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483818

RESUMO

BACKGROUND: Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS: We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS: In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION: The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.


Assuntos
Antígenos de Protozoários/metabolismo , Vírus da Hepatite B do Pato/genética , Vacinas Antimaláricas/biossíntese , Pichia/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Anticorpos Bloqueadores/imunologia , Antígenos de Protozoários/genética , Patos/virologia , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/isolamento & purificação , Plasmodium falciparum/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação
7.
PLoS One ; 14(9): e0221733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31504038

RESUMO

The development of effective malaria vaccines remains a global health priority. Currently, the most advanced vaccine, known as RTS,S, has only shown modest efficacy in clinical trials. Thus, the development of more efficacious vaccines by improving the formulation of RTS,S for increased efficacy or to interrupt malaria transmission are urgently needed. The RTS,S vaccine is based on the presentation of a fragment of the sporozoite antigen on the surface of virus-like particles (VLPs) based on human hepatitis B virus (HBV). In this study, we have developed and evaluated a novel VLP platform based on duck HBV (known as Metavax) for malaria vaccine development. This platform can incorporate large and complex proteins into VLPs and is produced in a Hansenula cell line compatible with cGMP vaccine production. Here, we have established the expression of leading P. falciparum malaria vaccine candidates as VLPs. This includes Pfs230 and Pfs25, which are candidate transmission-blocking vaccine antigens. We demonstrated that the VLPs effectively induce antibodies to malaria vaccine candidates with minimal induction of antibodies to the duck-HBV scaffold antigen. Antibodies to Pfs230 also recognised native protein on the surface of gametocytes, and antibodies to both Pfs230 and Pfs25 demonstrated transmission-reducing activity in standard membrane feeding assays. These results establish the potential utility of this VLP platform for malaria vaccines, which may be suitable for the development of multi-component vaccines that achieve high vaccine efficacy and transmission-blocking immunity.


Assuntos
Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anopheles/parasitologia , Afinidade de Anticorpos , Células HEK293 , Vírus da Hepatite B/genética , Humanos , Vacinas Antimaláricas/genética , Mosquitos Vetores/parasitologia , Pichia/genética , Pichia/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Coelhos , Proteínas Recombinantes/genética , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
J Infect Dis ; 220(7): 1178-1187, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31075171

RESUMO

BACKGROUND: Antibodies to the blood stages of malaria parasites enhance parasite clearance and antimalarial efficacy. The antibody subclass and functions that contribute to parasite clearance during antimalarial treatment and their relationship to malaria transmission intensity have not been characterized. METHODS: Levels of immunoglobulin G (IgG) subclasses and C1q fixation in response to Plasmodium falciparum merozoite antigens (erythrocyte-binding antigen [EBA] 175RIII-V, merozoite surface protein 2 [MSP-2], and MSP-142) and opsonic phagocytosis of merozoites were measured in a multinational trial assessing the efficacy of artesunate therapy across 11 Southeast Asian sites. Regression analyses assessed the effects of antibody seropositivity on the parasite clearance half-life (PC½), having a PC½ of ≥5 hours, and having parasitemia 3 days after treatment. RESULTS: IgG3, followed by IgG1, was the predominant IgG subclass detected (seroprevalence range, 5%-35% for IgG1 and 27%-41% for IgG3), varied across study sites, and was lowest in study sites with the lowest transmission intensity and slowest mean PC½. IgG3, C1q fixation, and opsonic-phagocytosis seropositivity were associated with a faster PC½ (range of the mean reduction in PC½, 0.47-1.16 hours; P range, .001-.03) and a reduced odds of having a PC½ of ≥5 hours and having parasitemia 3 days after treatment. CONCLUSIONS: The prevalence of IgG3, complement-fixing antibodies, and merozoite phagocytosis vary according to transmission intensity, are associated with faster parasite clearance, and may be sensitive surrogates of an augmented clearance capacity of infected erythrocytes. Determining the functional immune mechanisms associated with parasite clearance will improve characterization of artemisinin resistance.


Assuntos
Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Imunidade Inata , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Plasmodium falciparum/genética , Adolescente , Adulto , Idoso , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Resistência Microbiana a Medicamentos , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Merozoítos/imunologia , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Fagocitose/imunologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/imunologia , Estudos Soroepidemiológicos , Resultado do Tratamento , Adulto Jovem
9.
Front Immunol ; 10: 439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930896

RESUMO

Naturally acquired immunity (NAI) to Plasmodium falciparum malaria is mainly mediated by IgG antibodies but the subclasses, epitope targets and effector functions have not been unequivocally defined. Dissecting the type and specificity of antibody responses mediating NAI is a key step toward developing more effective vaccines to control the disease. We investigated the role of IgG subclasses to malaria antigens in protection against disease and the factors that affect their levels, including vaccination with RTS,S/AS01E. We analyzed plasma and serum samples at baseline and 1 month after primary vaccination with RTS,S or comparator in African children and infants participating in a phase 3 trial in two sites of different malaria transmission intensity: Kintampo in Ghana and Manhiça in Mozambique. We used quantitative suspension array technology (qSAT) to measure IgG1-4 responses to 35 P. falciparum pre-erythrocytic and blood stage antigens. Our results show that the pattern of IgG response is predominantly IgG1 or IgG3, with lower levels of IgG2 and IgG4. Age, site and RTS,S vaccination significantly affected antibody subclass levels to different antigens and susceptibility to clinical malaria. Univariable and multivariable analysis showed associations with protection mainly for cytophilic IgG3 levels to selected antigens, followed by IgG1 levels and, unexpectedly, also with IgG4 levels, mainly to antigens that increased upon RTS,S vaccination such as MSP5 and MSP1 block 2, among others. In contrast, IgG2 was associated with malaria risk. Stratified analysis in RTS,S vaccinees pointed to novel associations of IgG4 responses with immunity mainly involving pre-erythrocytic antigens upon RTS,S vaccination. Multi-marker analysis revealed a significant contribution of IgG3 responses to malaria protection and IgG2 responses to malaria risk. We propose that the pattern of cytophilic and non-cytophilic IgG antibodies is antigen-dependent and more complex than initially thought, and that mechanisms of both types of subclasses could be involved in protection. Our data also suggests that RTS,S efficacy is significantly affected by NAI, and indicates that RTS,S vaccination significantly alters NAI.


Assuntos
Antígenos de Protozoários/imunologia , Imunoglobulina G/sangue , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/imunologia , Imunidade Adaptativa , Feminino , Humanos , Lactente , Malária/sangue , Malária/imunologia , Malária/prevenção & controle , Masculino , Vacinação
10.
Nat Commun ; 10(1): 610, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723225

RESUMO

Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation. We identify merozoite targets of complement-fixing antibodies and identify antigen-specific complement-fixing antibodies that are strongly associated with protection from malaria in a longitudinal study of children. Using statistical modelling, combining three different antigens targeted by complement-fixing antibodies could increase the potential protective effect to over 95%, and we identify antigens that were common in the most protective combinations. Our findings support antibody-complement interactions against merozoite antigens as important anti-malaria immune mechanisms, and identify specific merozoite antigens for further evaluation as vaccine candidates.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Adolescente , Animais , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Complemento C1q/imunologia , Testes de Fixação de Complemento , Humanos , Estudos Longitudinais , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia
11.
Sci Transl Med ; 11(474)2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626712

RESUMO

Although there has been major recent progress in malaria vaccine development, substantial challenges remain for achieving highly efficacious and durable vaccines against Plasmodium falciparum and Plasmodium vivax malaria. Greater knowledge of mechanisms and key targets of immunity are needed to accomplish this goal, together with new strategies for generating potent, long-lasting, functional immunity against multiple antigens. Implementation considerations in endemic areas will ultimately affect vaccine effectiveness, so innovations to simplify and enhance delivery are also needed. Whereas challenges remain, recent exciting progress and emerging knowledge promise hope for the future of malaria vaccines.


Assuntos
Vacinas Antimaláricas/imunologia , Animais , Ensaios Clínicos como Assunto , Humanos , Imunidade , Plasmodium/crescimento & desenvolvimento , Fatores de Tempo , Resultado do Tratamento
12.
J Infect Dis ; 219(5): 819-828, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30365004

RESUMO

BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.


Assuntos
Anticorpos Antiprotozoários/sangue , Eritrócitos/parasitologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas Opsonizantes/sangue , Proteínas Opsonizantes/imunologia , Papua Nova Guiné , Fagocitose
13.
PLoS Med ; 15(7): e1002606, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30016328

RESUMO

BACKGROUND: Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (IPTp-DP) has been shown to reduce the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (IPTp-SP). However, limited data exist on how IPTp regimens impact malaria risk during infancy. We conducted a double-blinded randomized controlled trial (RCT) to test the hypothesis that children born to mothers given IPTp-DP would have a lower incidence of malaria during infancy compared to children born to mothers who received IPTp-SP. METHODS AND FINDINGS: We compared malaria metrics among children in Tororo, Uganda, born to women randomized to IPTp-SP given every 8 weeks (SP8w, n = 100), IPTp-DP every 8 weeks (DP8w, n = 44), or IPTp-DP every 4 weeks (DP4w, n = 47). After birth, children were given chemoprevention with DP every 12 weeks from 8 weeks to 2 years of age. The primary outcome was incidence of malaria during the first 2 years of life. Secondary outcomes included time to malaria from birth and time to parasitemia following each dose of DP given during infancy. Results are reported after adjustment for clustering (twin gestation) and potential confounders (maternal age, gravidity, and maternal parasitemia status at enrolment).The study took place between June 2014 and May 2017. Compared to children whose mothers were randomized to IPTp-SP8w (0.24 episodes per person year [PPY]), the incidence of malaria was higher in children born to mothers who received IPTp-DP4w (0.42 episodes PPY, adjusted incidence rate ratio [aIRR] 1.92; 95% CI 1.00-3.65, p = 0.049) and nonsignificantly higher in children born to mothers who received IPT-DP8w (0.30 episodes PPY, aIRR 1.44; 95% CI 0.68-3.05, p = 0.34). However, these associations were modified by infant sex. Female children whose mothers were randomized to IPTp-DP4w had an apparently 4-fold higher incidence of malaria compared to female children whose mothers were randomized to IPTp-SP8w (0.65 versus 0.20 episodes PPY, aIRR 4.39, 95% CI 1.87-10.3, p = 0.001), but no significant association was observed in male children (0.20 versus 0.28 episodes PPY, aIRR 0.66, 95% CI 0.25-1.75, p = 0.42). Nonsignificant increases in malaria incidence were observed among female, but not male, children born to mothers who received DP8w versus SP8w. In exploratory analyses, levels of malaria-specific antibodies in cord blood were similar between IPTp groups and sex. However, female children whose mothers were randomized to IPTp-DP4w had lower mean piperaquine (PQ) levels during infancy compared to female children whose mothers received IPTp-SP8w (coef 0.81, 95% CI 0.65-1.00, p = 0.048) and male children whose mothers received IPTp-DP4w (coef 0.72, 95% CI 0.57-0.91, p = 0.006). There were no significant sex-specific differences in PQ levels among children whose mothers were randomized to IPTp-SP8w or IPTp-DP8w. The main limitations were small sample size and childhood provision of DP every 12 weeks in infancy. CONCLUSIONS: Contrary to our hypothesis, preventing malaria in pregnancy with IPTp-DP in the context of chemoprevention with DP during infancy does not lead to a reduced incidence of malaria in childhood; in this setting, it may be associated with an increased incidence of malaria in females. Future studies are needed to better understand the biological mechanisms of in utero drug exposure on drug metabolism and how this may affect the dosing of antimalarial drugs for treatment and prevention during infancy. TRIAL REGISTRATION: ClinicalTrials.gov number NCT02163447.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Malária Falciparum/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Pirimetamina/administração & dosagem , Quinolinas/administração & dosagem , Sulfadoxina/administração & dosagem , Adolescente , Adulto , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Pré-Escolar , Método Duplo-Cego , Esquema de Medicação , Combinação de Medicamentos , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/parasitologia , Pirimetamina/efeitos adversos , Quinolinas/efeitos adversos , Sulfadoxina/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Uganda/epidemiologia , Adulto Jovem
14.
BMC Med ; 16(1): 61, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29706136

RESUMO

BACKGROUND: Antibodies targeting Plasmodium falciparum sporozoites play a key role in human immunity to malaria. However, antibody mechanisms that neutralize sporozoites are poorly understood. This has been a major constraint in developing highly efficacious vaccines, as we lack strong correlates of protective immunity. METHODS: We quantified the ability of human antibodies from malaria-exposed populations to interact with human complement, examined the functional effects of complement activity against P. falciparum sporozoites in vitro, and identified targets of functional antibodies. In children and adults from malaria-endemic regions, we determined the acquisition of complement-fixing antibodies to sporozoites and their relationship with antibody isotypes and subclasses. We also investigated associations with protective immunity in a longitudinal cohort of children (n = 206) residing in a malaria-endemic region. RESULTS: We found that antibodies to the major sporozoite surface antigen, circumsporozoite protein (CSP), were predominately IgG1, IgG3, and IgM, and could interact with complement through recruitment of C1q and activation of the classical pathway. The central repeat region of CSP, included in leading vaccines, was a key target of complement-fixing antibodies. We show that antibodies activate human complement on P. falciparum sporozoites, which consequently inhibited hepatocyte cell traversal that is essential for establishing liver-stage infection, and led to sporozoite death in vitro. The natural acquisition of complement-fixing antibodies in malaria-exposed populations was age-dependent, and was acquired more slowly to sporozoite antigens than to merozoite antigens. In a longitudinal cohort of children, high levels of complement-fixing antibodies were significantly associated with protection against clinical malaria. CONCLUSIONS: These novel findings point to complement activation by antibodies as an important mechanism of anti-sporozoite human immunity, thereby enabling new strategies for developing highly efficacious malaria vaccines. We also present evidence that complement-fixing antibodies may be a valuable correlate of protective immunity in humans.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Feminino , Humanos , Vacinas Antimaláricas/farmacologia , Masculino
15.
J Infect Dis ; 218(1): 35-43, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29584918

RESUMO

Background: Overcoming antigenic diversity is a key challenge in the development of effective Plasmodium falciparum malaria vaccines. Strategies that promote the generation of antibodies targeting conserved epitopes of vaccine antigens may provide protection against diverse parasites strains. Understanding differences between vaccine-induced and naturally acquired immunity is important to achieving this goal. Methods: We analyzed antibodies generated in a phase 1 human vaccine trial, MSP2-C1, which included 2 allelic forms of MSP2, an abundant vaccine antigen on the merozoite surface. Vaccine-induced responses were assessed for functional activity against multiple parasite strains, and cross-reactivity of antibodies was determined using competition ELISA and epitope mapping approaches. Results: Vaccination induced cytophilic antibody responses with strain-transcending opsonic phagocytosis and complement-fixing function. In contrast to antibodies acquired via natural infection, vaccine-induced antibodies were directed towards conserved epitopes at the C-terminus of MSP2, whereas naturally acquired antibodies mainly targeted polymorphic epitopes. Functional activity of C-terminal-targeted antibodies was confirmed using monoclonal antibodies that promoted opsonic phagocytosis against multiple parasite strains. Conclusion: Vaccination generated markedly different responses to polymorphic antigens than naturally acquired immunity and targeted conserved functional epitopes. Induction of antibodies targeting conserved regions of malaria antigens provides a promising vaccine strategy to overcome antigenic diversity for developing effective malaria vaccines.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Alelos , Animais , Antígenos de Protozoários/genética , Criança , Pré-Escolar , Epitopos/genética , Feminino , Humanos , Masculino , Proteínas Opsonizantes/sangue , Fagocitose , Proteínas de Protozoários/genética
16.
Clin Infect Dis ; 66(4): 586-593, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401272

RESUMO

Background: A main criterion to identify malaria vaccine candidates is the proof that acquired immunity against them is associated with protection from disease. The age of the studied individuals, heterogeneous malaria exposure, and assumption of the maintenance of a baseline immune response can confound these associations. Methods: Immunoglobulin G/immunoglobulin M (IgG/ IgM) levels were measured by Luminex® in Mozambican children monitored for clinical malaria from birth until 3 years of age, together with functional antibodies. Studied candidates were pre-erythrocytic and erythrocytic antigens, including EBAs/PfRhs, MSPs, DBLs, and novel antigens merely or not previously studied in malaria-exposed populations. Cox regression models were estimated at 9 and 24 months of age, accounting for heterogeneous malaria exposure or limiting follow-up according to the antibody's decay. Results: Associations of antibody responses with higher clinical malaria risk were avoided when accounting for heterogeneous malaria exposure or when limiting the follow-up time in the analyses. Associations with reduced risk of clinical malaria were found only at 24 months old, but not younger children, for IgG breadth and levels of IgG targeting EBA140III-V, CyRPA, DBL5ε and DBL3x, together with C1q-fixation activity by antibodies targeting MSP119. Conclusions: Malaria protection correlates were identified, only in children aged 24 months old when accounting for heterogeneous malaria exposure. These results highlight the relevance of considering age and malaria exposure, as well as the importance of not assuming the maintenance of a baseline immune response throughout the follow-up. Results may be misleading if these factors are not considered.


Assuntos
Anticorpos Antiprotozoários/imunologia , Imunoglobulina G/imunologia , Malária Falciparum/imunologia , Imunidade Adaptativa , Fatores Etários , Antígenos de Protozoários/imunologia , Pré-Escolar , Feminino , Humanos , Imunoglobulina M/imunologia , Lactente , Recém-Nascido , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Masculino , Moçambique , Plasmodium falciparum , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Regressão
17.
Front Immunol ; 9: 3126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692996

RESUMO

Vaccines that target Plasmodium falciparum gametocytes have the potential to reduce malaria transmission and are thus attractive targets for malaria control. However, very little is known about human immune responses to gametocytes present in human hosts. We evaluated naturally-acquired antibodies to gametocyte-infected erythrocytes (gametocyte-IEs) of different developmental stages compared to other asexual parasite stages among naturally-exposed Kenyan residents. We found that acquired antibodies strongly recognized the surface of mature asexual-IEs, but there was limited reactivity to the surface of gametocyte-IEs of different stages. We used genetically-modified P. falciparum with suppressed expression of PfEMP1, the major surface antigen of asexual-stage IEs, to demonstrate that PfEMP1 is a dominant target of antibodies to asexual-IEs, in contrast to gametocyte-IEs. Antibody reactivity to gametocyte-IEs was similar to asexual-IEs lacking PfEMP1. Significant antibody reactivity to the surface of gametocytes was observed when outside of the host erythrocyte, including recognition of the major gametocyte antigen, Pfs230. This indicates that there is a deficiency of acquired antibodies to gametocyte-IEs despite the acquisition of antibodies to gametocyte antigens and asexual IEs. Our findings suggest that the acquisition of substantial immunity to the surface of gametocyte-IEs is limited, which may facilitate immune evasion to enable malaria transmission even in the face of substantial host immunity to malaria. Further studies are needed to understand the basis for the limited acquisition of antibodies to gametocytes and whether vaccine strategies can generate substantial immunity.


Assuntos
Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Humanos , Imunoglobulina G/imunologia , Quênia , Estágios do Ciclo de Vida , Plasmodium falciparum/genética
18.
Front Microbiol ; 9: 3300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30700984

RESUMO

The majority of malaria infections in low transmission settings remain undetectable by conventional diagnostics. A powerful model to identify antibody responses that allow accurate detection of recent exposure to low-density infections is controlled human malaria infection (CHMI) studies in which healthy volunteers are infected with the Plasmodium parasite. We aimed to evaluate antibody responses in malaria-naïve volunteers exposed to a single CHMI using a custom-made protein microarray. All participants developed a blood-stage infection with peak parasite densities up to 100 parasites/µl in the majority of participants (50/54), while the remaining four participants had peak densities between 100 and 200 parasites/µl. There was a strong correlation between parasite density and antibody responses associated with the most reactive blood-stage targets 1 month after CHMI (Etramp 5, GLURP-R2, MSP4 and MSP1-19; Spearman's ρ = 0.82, p < 0.001). Most volunteers developed antibodies against a potential marker of recent exposure: Etramp 5 (37/45, 82%). Our findings justify validation in endemic populations to define a minimum set of antigens needed to detect exposure to natural low-density infections.

19.
PLoS One ; 12(8): e0182187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787025

RESUMO

Erythrocyte-binding antigens (EBAs) and P. falciparum reticulocyte-binding homologue proteins (PfRhs) are two important protein families that can vary in expression and utilization by P. falciparum to evade inhibitory antibodies. We evaluated antibodies at repeated time-points among individuals living in an endemic region in Nigeria over almost one year against these vaccine candidates. Antibody levels against EBA140, EBA175, EBA181, PfRh2, PfRh4, and MSP2, were measured by ELISA. We also used parasites with disrupted EBA140, EBA175 and EBA181 genes to show that all these were targets of invasion inhibitory antibodies. However, antigenic targets of inhibitory antibodies were not stable and changed substantially over time in most individuals, independent of age. Antibodies levels measured by ELISA also varied within and between individuals over time and the antibodies against EBA181, PfRh2 and MSP2 declined more rapidly in younger individuals (≤15 years) compared with older (>15). The breadth of high antibody responses over time was more influenced by age than by the frequency of infection. High antibody levels were associated with a more stable invasion inhibitory response, which could indicate that during the long process of formation of immunity, many changes not only in levels but also in functional responses are needed. This is an important finding in understanding natural immunity against malaria, which is essential for making an efficacious vaccine.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Evasão da Resposta Imune , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Idoso , Envelhecimento/imunologia , Criança , Pré-Escolar , Doenças Endêmicas , Humanos , Imunoglobulina G/sangue , Estimativa de Kaplan-Meier , Estudos Longitudinais , Malária Falciparum/epidemiologia , Pessoa de Meia-Idade , Nigéria , Proteínas de Protozoários/sangue , Estações do Ano , Adulto Jovem
20.
J Leukoc Biol ; 101(4): 913-925, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27837017

RESUMO

Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Imunidade , Malária/imunologia , Malária/parasitologia , Merozoítos/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos/imunologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Parasitemia/parasitologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...